Automorphisme intérieur d'un groupe G


Automorphisme intérieur d'un groupe G

Automorphisme intérieur d'un groupe G automorphisme de G qui, a étant un élément fixé de G, associe à x, axa−1.

Encyclopédie Universelle. 2012.

Regardez d'autres dictionnaires:

  • Automorphisme Intérieur — Un automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soit G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l automorphisme défini par : Pour un groupe abélien, les… …   Wikipédia en Français

  • Automorphisme interieur — Automorphisme intérieur Un automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soit G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l automorphisme défini par : Pour …   Wikipédia en Français

  • Automorphisme intérieur — ● Automorphisme intérieur automorphisme défini sur un groupe G qui, a étant un élément de G, associe à tout x une image de la forme axa−1 …   Encyclopédie Universelle

  • Automorphisme intérieur — Un automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soit G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l automorphisme défini par : Pour un groupe abélien, les… …   Wikipédia en Français

  • intérieur — intérieur, ieure [ ɛ̃terjɶr ] adj. et n. m. • 1406; lat. interior I ♦ Adj. 1 ♦ Qui est au dedans, dans l espace compris entre les limites d une chose, d un être (opposé à extérieur).⇒ interne. Point intérieur à un cercle. Cour intérieure. Mer… …   Encyclopédie Universelle

  • automorphisme — [ otomɔrfism ] n. m. • v. 1949; de auto et morphisme ♦ Math. Pour une même structure, Isomorphisme d un ensemble sur lui même. Automorphisme de groupe, d anneau. ● automorphisme nom masculin Isomorphisme d un ensemble sur lui même. ●… …   Encyclopédie Universelle

  • Groupe complet — En mathématiques, et plus particulièrement en théorie des groupes, un groupe G est dit complet si son centre est réduit à l élément neutre et que tous ses automorphismes sont intérieurs. Sommaire 1 Exemples 2 Propriétés 3 …   Wikipédia en Français

  • Automorphisme — Un automorphisme est un isomorphisme d un objet mathématique X dans lui même. Autrement dit, c est une bijection de X dans X qui préserve la « structure » de X. On peut le voir comme une symétrie de X. Les automorphismes de X forment un …   Wikipédia en Français

  • Groupe Alterné — En mathématiques, et plus précisément en théorie des groupes, le groupe alterné de degré n, souvent noté An, est un sous groupe distingué du groupe symétrique des permutations d un ensemble fini de cardinal n. Ce sous groupe est composé des… …   Wikipédia en Français

  • Groupe alterne — Groupe alterné En mathématiques, et plus précisément en théorie des groupes, le groupe alterné de degré n, souvent noté An, est un sous groupe distingué du groupe symétrique des permutations d un ensemble fini de cardinal n. Ce sous groupe est… …   Wikipédia en Français